CSV Data

  1. What is a CSV?
  2. Reading a CSV
  3. Writing to a CSV

What is a CSV?

CSV stands for “Comma Separated Values.” It is the simplest form of storing data in tabular form as plain text. It is important to know to work with CSV because we mostly rely on CSV data in our day-to-day lives as data scientists.

Structure of CSV: 

# Hinweis
YearsExperience, Salary      <- HEADER
1.1, 39343.00   -
1.3, 46205.00    |
1.5, 37731.00    |
2.0, 43525.00    |
2.2, 39891.00    |<- Values, seperated by a comma
2.9, 56642.00    |
3.0, 60150.00    |
3.2, 54445.00    |
3.2, 64445.00   -
...

We have a file named Salary_Data.csv  The first line of a CSV file is the header and contains the names of the fields/features.

After the header, each line of the file is an observation/a record. The values of a record are separated by “comma.”

Reading a CSV

CSV files can be handled in multiple ways in Python.

Using csv.reader

Reading a CSV using Python’s inbuilt module called csv using csv.reader object.

Steps to read a CSV file:

Import the csv library

# Hinweis
import csv

Open the CSV file

The .open() method in python is used to open files and return a file object.

file = open("/tmp/Salary_Data.csv")

print(type(file))

The type of file is “_io.TextIOWrapper” which is a file object that is returned by the open() method.

3. Use the csv.reader object to read the CSV file

import csv
file = open("/tmp/Salary_Data.csv")
csvreader = csv.reader(file)
print(type(csvreader))
print(csvreader)

Extract the field names

Create an empty list called header. Use the next() method to obtain the header.

The .next() method returns the current row and moves to the next row.

The first time you run next() it returns the header and the next time you run it returns the first record and so on.

import csv
file = open("/tmp/Salary_Data.csv")
csvreader = csv.reader(file)

header = []
header = next(csvreader)
print(header)

Extract the rows/records

Create an empty list called rows and iterate through the csvreader object and append each row to the rows list.

import csv
file = open("/tmp/Salary_Data.csv")
csvreader = csv.reader(file)
rows = []
for row in csvreader:
    rows.append(row)
print(rows)
for row in rows:
    print(row)

Close the file

.close() method is used to close the opened file. Once it is closed, we cannot perform any operations on it.

import csv
file = open("/tmp/Salary_Data.csv")
csvreader = csv.reader(file)

header = []
header = next(csvreader)
print(header)
rows = []
for row in csvreader:
    rows.append(row)
print(rows)
for row in rows:
    print(row)
file.close()

Naturally, we might forget to close an open file. To avoid that we can use the with() statement to automatically release the resources. In simple terms, there is no need to call the .close() method if we are using with() statement.

Implementing the above code using with() statement:

Syntax: with open(filename, mode) as alias_filename:

Modes:

‘r’ – to read an existing file,
‘w’ – to create a new file if the given file doesn’t exist and write to it,
‘a’ – to append to existing file content,
‘+’ –  to create a new file for reading and writing

import csv
rows = []
with open("/tmp/Salary_Data.csv", 'r') as file:
    csvreader = csv.reader(file)
    header = next(csvreader)
    for row in csvreader:
        rows.append(row)
print(header)
print(rows)

Using .readlines()

Now the question is – “Is it possible to fetch the header, rows using only open() and with() statements and without the csv library?” Let’s see…

.readlines() method is the answer. It returns all the lines in a file as a list. Each item of the list is a row of our CSV file.

The first row of the file.readlines() is the header and the rest of them are the records.

import csv
with open('/tmp/Salary_Data.csv') as file:
    content = file.readlines()
header = content[:1]
rows = content[1:]
print(header)
print(rows)

**The \n from the output can be removed using .strip() method.

What if we have a huge dataset with hundreds of features and thousands of records. Would it be possible to handle lists??

Here comes the pandas library into the picture.

2.3 Using pandas

Steps of reading CSV files using pandas

1. Import pandas library

import pandas as pd

2. Load CSV files to pandas using read_csv()

Basic Syntax: pandas.read_csv(filename, delimiter=’,’)

import pandas as pd
data= pd.read_csv("/tmp/Salary_Data.csv")
print(data)

Extract the field names

.columns is used to obtain the header/field names.

import pandas as pd
data= pd.read_csv("/tmp/Salary_Data.csv")
print(data.columns)

4. Extract the rows

All the data of a data frame can be accessed using the field names.

import pandas as pd
data= pd.read_csv("/tmp/Salary_Data.csv")
print(data.Salary)

3. Writing to a CSV file

We can write to a CSV file in multiple ways.

3.1 Using csv.writer

Let’s assume we are recording 3 Students data (Name, M1 Score, M2 Score)

header = ['Name', 'M1 Score', 'M2 Score']
data = [['Alex', 62, 80], ['Brad', 45, 56], ['Joey', 85, 98]]

Steps of writing to a CSV file:

1. Import csv library

import csv

2. Define a filename and Open the file using open()

3. Create a csvwriter object using csv.writer()

4. Write the header

5. Write the rest of the data

code for steps 2-5

import csv
header = ['Name', 'M1 Score', 'M2 Score']
data = [['Alex', 62, 80], ['Brad', 45, 56], ['Joey', 85, 98]]

filename = 'Students_Data.csv'
with open(filename, 'w', newline="") as file:
    csvwriter = csv.writer(file) # 1. create a csvwriter object
    csvwriter.writerow(header) # 2. write the header
    csvwriter.writerows(data) # 3. write the rest of the data
file.close()

# print current directory
import os
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
    print(f)
print()

# contents of the data file
file = open(filename, 'r')
print(file.read())

Using writelines()

Iterate through each list and convert the list elements to a string and write to the csv file.

import csv
header = ['Name', 'M1 Score', 'M2 Score']
data = [['Alex', 62, 80], ['Brad', 45, 56], ['Joey', 85, 98]]
filename = 'Student_scores_2.csv'
with open(filename, 'w') as file:
    for header in header:
        file.write(str(header)+', ')
    file.write('\n')
    for row in data:
        for x in row:
            file.write(str(x)+', ')
        file.write('\n')

# print current directory
import os
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
    print(f)
print()

# contents of the data file
file = open(filename, 'r')
print(file.read())

Using pandas

Steps to writing to a CSV using pandas

Import pandas library

# Hinweis
import pandas as pd

Create a pandas dataframe using pd.DataFrame

Syntax: pd.DataFrame(data, columns)

The data parameter takes the records/observations and the columns parameter takes the columns/field names.

import pandas as pd

header = ['Name', 'M1 Score', 'M2 Score']
data = [['Alex', 62, 80], ['Brad', 45, 56], ['Joey', 85, 98]]
data = pd.DataFrame(data, columns=header)
print(data)

Write to a CSV file using to_csv()

Syntax: DataFrame.to_csv(filename, sep=’,’, index=False)

**separator is ‘,’ by default.

index=False to remove the index numbers.

import pandas as pd
header = ['Name', 'M1 Score', 'M2 Score']
data = [['Alex', 62, 80], ['Brad', 45, 56], ['Joey', 85, 98]]
data = pd.DataFrame(data, columns=header)
print(data)

filename = 'Stu_data.csv'
data.to_csv(filename, index=False)

# print current directory
import os
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
    print(f)
print()

# contents of the data file
file = open(filename, 'r')
print(file.read())

zurück: 12